

НОВЫЕ ПОДХОДЫ И ТЕХНОЛОГИИ В ОБЛАСТИ ГЕНЕТИЧЕСКОЙ ЭКСПЕРТИЗЫ

Ахмедов Баходир Бахтиярович,

главный эксперт Республиканского центра судебной экспертизы имени Х.Сулаймановой. Ташкент. Узбекистан. Адрес электронной noumы: bahodir.bio88@gmail.com

Аннотация

В последние годы развитие генетической экспертизы существенно ускорилось благодаря внедрению новых методов и технологий. Современные подходы включают улучшение методов секвенирования, использование биоинформатики, развитие методов фенотипирования и анализ сложных биологических образцов. В статье рассматриваются основные новшества в этой области, их преимущества, ограничения и перспективы для применения в судебной практике.

Ключевые слова: генетическая экспертиза, криминалистика, секвенирование нового поколения, фенотипирование ДНК, этика.

Введение

Генетическая экспертиза занимает центральное место в судебной медицине, позволяя идентифицировать личности, устанавливать родство и решать уголовные и гражданские споры. Традиционные методы, такие как анализ STR-локусов (коротких тандемных повторов), остаются стандартом. Однако растущие требования к точности, скорости и анализу сложных образцов стимулируют внедрение новых технологий.

Новые подходы в генетической экспертизе

1. Секвенирование нового поколения (Next-Generation Sequencing, NGS)

NGS революционизировало генетическую экспертизу, позволяя проводить анализ миллионов последовательностей ДНК одновременно. Этот метод позволяет:

- Анализировать не только STR-локусы, но и SNP (однонуклеотидные полиморфизмы), mtDNA и ядерную ДНК.
 - Обрабатывать деградированные или минимальные образцы ДНК.

• Обеспечивать полное секвенирование генома, что расширяет возможности судебного анализа.

Преимущества: Высокая чувствительность и точность. **Ограничения**: Высокая стоимость оборудования и сложность обработки данных.

2. Maccпараллельный анализ (Massively Parallel Sequencing, MPS)

MPS позволяет анализировать большое количество локусов одновременно, обеспечивая высокую производительность при изучении сложных образцов. Применение этой технологии особенно полезно в случаях анализа смешанных следов или сильно деградированной ДНК.

3. Фенотипирование по ДНК

Фенотипирование ДНК используется для предсказания внешних характеристик (цвет глаз, кожи, волос) и этнического происхождения. Эта методика применяется в расследованиях, когда нет прямых совпадений в базах данных.

Пример: Технологии, такие как Parabon Snapshot, позволяют создавать "фотороботы" подозреваемых на основе генетической информации.

4. Анализ "эпигенетических маркеров"

Эпигенетика предоставляет информацию о возрасте или состоянии здоровья человека. Метилирование ДНК может быть использовано для оценки биологического возраста, что может помочь при идентификации неизвестных жертв.

5. Микробиомные исследования

Каждый человек обладает уникальным микробиомом, который может быть использован в качестве дополнительного маркера для идентификации. Анализ микробиома применяется в случаях, когда традиционные методы идентификации невозможны.

6. Цифровая ПЦР (dPCR)

Цифровая ПЦР обеспечивает количественный анализ ДНК, что критически важно в случаях, где объём биоматериала минимален. Она повышает чувствительность и позволяет работать с ультранизкими концентрациями ДНК.

7. Анализ смешанных образцов

Современные алгоритмы машинного обучения значительно улучшают раздельный анализ смешанных образцов ДНК, выделяя профили нескольких индивидов.

8. Генетические базы данных

Расширение национальных и международных генетических баз данных (например, CODIS) позволяет быстрее идентифицировать преступников. При этом внедряются методы поиска по родственному соответствию, что полезно для случаев, когда прямого совпадения нет.

Проблемы и вызовы

Этические аспекты:

Широкое использование генетических данных вызывает ряд вопросов, связанных с конфиденциальностью и правами человека. Основные проблемы включают:

- Защиту персональных данных: сбор и хранение ДНК в базах данных требуют строгого регулирования.
- *Генетическая дискриминация*: риск злоупотребления генетической информацией со стороны работодателей, страховых компаний и правительственных структур.

Добровольное согласие: использование ДНК, полученной через коммерческие генетические тесты (например, 23 and Me), для криминалистических расследований вызывает споры.

Правовые ограничения:

Законодательная база не всегда успевает за развитием технологий, что может ограничивать их использование в судебной практике.

Технические сложности:

Современные методы требуют высококвалифицированного персонала, дорогого оборудования и длительного обучения.

Перспективы развития

- 1. **Автоматизация процессов**: Внедрение искусственного интеллекта и машинного обучения для анализа больших данных ускорит обработку результатов и повысит их точность.
- 2. **Интеграция данных**: Использование мультиомных подходов (геномика, протеомика, метаболомика) позволит получать более полную картину для судебной экспертизы.
- 3. **Доступность технологий**: Снижение стоимости оборудования и материалов сделает современные методы более доступными для лабораторий по всему миру.
 - 4. Решение "холодных" дел:

Технологии анализа древней и сильно деградировавшей ДНК успешно применяются для раскрытия преступлений прошлых десятилетий. Примером может служить использование генеалогических ДНК-баз для раскрытия серийных преступлений.

Заключение

Новые подходы и технологии в генетической экспертизе открывают значительные возможности для судебной медицины. Внедрение таких методов, как NGS, фенотипирование и микробиомный анализ, повышает точность и расширяет диапазон применений. Однако остаются нерешённые вопросы, связанные с этикой, правовыми ограничениями и сложностью внедрения. Будущее генетической экспертизы лежит в интеграции передовых технологий и выработке четких стандартов для их применения.

Список литературы

- 1. Butler J.M. Forensic DNA Typing. Elsevier, 2019.
- 2. Gill P. et al. "Developmental validation of DNA analysis systems." *Forensic Science International: Genetics*, 2021.
- 3. Kayser M., de Knijff P. "Improving human forensics through advances in genetics, genomics and molecular biology." *Nature Reviews Genetics*, 2020.