INVARIANCE PRINCIPLE FOR POSITIVELY ASSOCIATED RANDOM VARIABLES

Ziyadullayeva F,

National University of Uzbekistan, Tashkent, Uzbekistan; ziadullaevaf7@gmail.com.

Definition. A finite collection of random variables $\{X_j, 1 \le j \le n\}$ is said to be positively associated if for every every choice of component wise nondecreasing functions h and g from R^n to R,

$$Cov(h(X_1,...,X_n),g(X_1,...,X_n)) \ge 0$$

when ever it exists; an infinite collection of random variables $\{X_n, n \ge 1\}$ is said to be positively associated if every finite sub-collection is associated.

Let the sequence $\{X_n, n \ge 1\}$ be a sequence of random variables with $EX_n=0$,

$$EX_{n}^{2} < \infty, n \ge 1.$$
 Let $S_{0} = 0, S_{n} = \sum_{k=2}^{n} Xk, \sigma_{n}^{2} = ES_{n}^{2}, n \ge 1.$

Assume that $\sigma_n^2 > 0$, $n \ge 1$. Let $\{k_n, n \ge 0\}$ be an increasing sequence of real

- numbers such that $0=k_0<k_1<k_2<...$ (1)
- and $\lim_{n\to\infty} \max_{1\le i\le n} (k_i k_{i-1})/k_n = 0.$ (2)

Define $m(t)=max\{i: k_i \leq t\}, t \geq 0$, and

$$W_n(t)=S_{mn}(t)/\sigma_n, t \in [0,1], n \ge 1,$$
 (3)

where $m_n(t)=m(tk_n)$. Consider the process

$$W*_{n}(t) = S[nt]/\sigma_{n}, t \in [0,1].$$
(4)

When $k_n=n$, $n\geq 1$ the processes defined by (3) and (4) are equivalent.

Theorem 1 (Newman and Wright (1981)). Let the sequence $\{X_n, n \ge 1\}$ be

a strictly stationary sequence of positively associated random variables with EX₁ =0 and EX²₁ < ∞ . If $0 < \sigma^2 = Var(X_1) + 2 \sum_{k=2}^{\infty} Cov(X_1, X_n) < \infty$, then, $W *_n^{L} \to W$ as $n \to \infty$, where W is a standard Wiener process.

An invariance principle for a non-stationary associated process has been studied by Birkel (1988).

Theorem 2 (Birkel (1988)). Let the sequence $\{Xn, n \ge 1\}$ be a sequence of associated random variables with $E(X_n)=0$, $E(X^2_n) < \infty$ for $n \ge 1$. Assume that (i) $\lim_{n\to\infty} \sigma^{-2} E(U_{nk}U_{nl})=\min(k,l)$ for $k,l\ge 1$ and $U_{m,n}=S_{m+n}-S_m$; and (ii) $\sigma^{-2} (S_{n+m}-S_n)^2$, $m\ge 0$, $n\ge 1$ is uniformly integrable.

Then
$$W*_nL \rightarrow W$$
 as $n \rightarrow \infty$.

Birkel's result was generalized by Matula and Rychlik (1990). They observed

that if $W_n^* \to W$ as $n \to \infty$, then $\sigma_n^2 = nh(n)$, (5)

where h: $R+\rightarrow R+$ is slowly varying. They proved an invariance principle for sequences {X_n,n \ge 1} which do not satisfy the condition (5).

Theorem 3. Let $X_n, n \in N$, be centred, square-integrable and associated random variables. The following statements are equivalent:

(a) The random variables X_n , $n \in N$, satisfy a Central Limit Theorem, and

$$1/\sigma_{n}^{2}E(S_{nm}S_{nk}) \rightarrow min(m,k), m,k \in \mathbb{N}.$$

(b) The random variables X_n , $n \in N$, satisfy the invariance principle in D[0,1].

Corollary. Let X_n , $n \in N$, be centred, square-integrable and associated random variables. Assume that $u(n) \rightarrow 0$, $u(1) < \infty$,

$$\forall \varepsilon > 0, 1/\sigma_n^2 \sum_{j=1}^n \int_{|X_j| > \varepsilon s_n} X_j^2 dP \to 0 \text{ and } 1/n\sigma_n^2 \to \sigma^2 \in (0,\infty)$$

are satisfied. Then the random variables X_n , $n \in N$, verify the invariance principle in D[0,1].

Theorem 4. Let $X_n, n \in N$, be centred and associated random variables. Assume that

 $\inf_{n \in \mathbb{N}} 1/n \sigma_n^2 > 0, \qquad 1/\sigma_n^2 \sigma_{nk}^2 \rightarrow k, k \in \mathbb{N}$

 $u(n)=O(n^{-\theta}) \text{ for some } \theta >0, \qquad \sup_{n \in \mathbb{N}} E|X_n| \stackrel{r+\eta}{<} \infty \text{ for some } r >2, \eta >0,$

are satisfied. Then the random variables X_n , $n \in N$, verify the invariance principle in D[0,1].

References

- 1. Birkel, T., 1988. The invariance principle for associated processes. Stochastic processes and Apple. 57-71.
- 2. Newman, C.M., Wright, A.L., 1981. An invariance principle for certain dependent sequences. Ann. Probab. V9. No 4, 671-675.