СОВРЕМЕННЫЕ ПОДХОДЫ К ЛАБОРАТОРНОЙ ДИАГНОСТИКЕ КОЛОРЕКТАЛЬНОГО РАКА

Хамидова Феруза Муйиновна

Ассистент кафедры Самаркандского Государственного медицинского университета. г. Самарканд, Узбекистан

Аннотация: Онкология толстой кишки занимает одно из ведущих мест среди злокачественных новообразований по уровню заболеваемости и смертности. Ранняя диагностика этого заболевания значительно повышает шансы на успешное лечение. В статье рассматриваются современные подходы к лабораторной диагностике колоректального рака, включая использование молекулярно-генетических методов, биохимических маркеров и анализа микробиоты кишечника. Также приводится сравнение с методами диагностики прошлых десятилетий, подчеркивая важность внедрения новых технологий, которые повысили точность, скорость и доступность диагностики.

Ключевые слова. Колоректальный рак, диагностика онкологии, лабораторные методы, молекулярная диагностика, онкомаркеры, микробиота кишечника, ДНК-тестирование, РНК-диагностика, ранняя диагностика, иммуногистохимия, NGS-секвенирование, жидкостная биопсия, калпротектин, CEA, CA 19-9.

Введение: Колоректальный рак (КРР) является одной из самых распространенных форм онкологических заболеваний в мире. По данным Всемирной организации здравоохранения (ВОЗ), ежегодно регистрируется более 1,8 миллиона новых случаев КРР. Основная проблема заключается в том, что симптомы заболевания на ранних стадиях минимальны или отсутствуют, что затрудняет диагностику.

Методы диагностики в прошлом

Ранее диагностика рака толстой кишки основывалась в основном на клинических симптомах, данных пальпации, рентгенографии и эндоскопических методов. Морфологический анализ тканей был основным лабораторным методом подтверждения диагноза. Однако эти подходы имели ряд недостатков, включая инвазивность, низкую чувствительность на ранних стадиях и длительное время обработки результатов.

Современные методы лабораторной диагностики

Современная лабораторная диагностика онкологии толстой кишки значительно расширила возможности раннего выявления и мониторинга заболевания:

Онкомаркеры в крови

Карциноэмбриональный антиген (CEA) и **CA 19-9**: используются для мониторинга эффективности лечения и выявления рецидивов.

Калпротектин: помогает в дифференциации воспалительных заболеваний кишечника от онкологии.

Жидкостная биопсия — это инновационный метод диагностики, который позволяет обнаружить злокачественные новообразования и их молекулярные особенности путем анализа биологических жидкостей (кровь, моча, спинномозговая жидкость). Этот метод является минимально инвазивной альтернативой традиционной тканевой биопсии.

Принципы метода

Жидкостная биопсия основана на анализе биомолекул, выделяемых опухолью или её метастазами в биологические жидкости:

- 1. **Циркулирующая опухолевая ДНК (ctDNA)** фрагменты ДНК, которые выбрасываются в кровь в результате апоптоза или некроза клеток опухоли.
- 2. **Циркулирующие опухолевые клетки (СТС)** клетки, которые отделились от первичной опухоли и находятся в кровотоке.
- 3. Экзосомы и микроРНК (miRNA) внеклеточные пузырьки, содержащие биомолекулы, связанные с опухолевыми процессами.

Этапы проведения жидкостной биопсии

Забор материала. Забор крови из вены является наиболее распространённым методом, хотя возможно использование других жидкостей, например, мочи или ликвора.

Выделение биомаркеров. Для выделения ctDNA или CTC применяют центрифугирование, иммуноаффинные методы и другие технологии.

Молекулярный анализ

- 1. **NGS** (секвенирование нового поколения) используется для выявления мутаций, связанных с онкологией (например, KRAS, BRAF, TP53).
- 2. ПЦР (полимеразная цепная реакция) обеспечивает высокочувствительное обнаружение генетических аномалий.
- 3. **Методы анализа метилирования ДНК** позволяют выявлять эпигенетические изменения, специфичные для рака.

Интерпретация результатов

Выявленные мутации, эпигенетические изменения или присутствие СТС интерпретируются для постановки диагноза, прогноза и выбора терапии.

Преимущества жидкостной биопсии

Минимальная инвазивность. Нет необходимости в хирургическом вмешательстве или взятии образцов ткани.

Раннее выявление. Метод позволяет обнаружить рак на доклинических стадиях.

Мониторинг заболевания. Жидкостная биопсия дает возможность отслеживать прогрессирование заболевания и эффективность терапии в режиме реального времени.

Персонализированный подход. Определение молекулярных характеристик опухоли позволяет выбрать целевую терапию.

Ограничения метода

Чувствительность:На ранних стадиях количество ctDNA может быть слишком низким для выявления.

Стандартизация:Отсутствие единых протоколов анализа и интерпретации результатов.

Стоимость: Использование высокотехнологичных методов, таких как NGS, делает диагностику дорогостоящей.

Клиническое значение в онкологии толстой кишки

Для колоректального рака жидкостная биопсия активно используется для:

- 1. Выявления мутаций в генах **KRAS**, **NRAS** и **BRAF** для подбора целевой терапии.
- 2. Мониторинга минимальной остаточной болезни после хирургического лечения.
- 3. Оценки появления вторичных резистентных мутаций при терапии ингибиторами EGFR.

Жидкостная биопсия является перспективным методом, который уже сейчас меняет парадигму диагностики и лечения рака. С дальнейшим развитием технологий она станет неотъемлемой частью персонализированной медицины.

NGS (секвенирование нового поколения) Технология NGS дает возможность изучать полный геном опухоли, выявляя мутации, ассоциированные с устойчивостью к терапии или агрессивностью заболевания.

ИммуногистохимическоеЭтот метод применяется для изучения экспрессии специфических белков в тканях опухоли. Например, исследование MSI (микросателлитной нестабильности) используется для диагностики наследственных форм КРР.

Анализ микробиоты кишечника Исследования показали, что изменение состава микрофлоры кишечника может быть связано с развитием КРР. Анализ микробиома предоставляет новую перспективу в диагностике и прогнозировании заболевания.

Эпигенетические маркеры. Метилирование генов, таких как SEPT9, исследуется для диагностики KPP с использованием анализа крови.

Преимущества современных методов

Современные лабораторные технологии значительно сократили время постановки диагноза и улучшили его точность. Например, использование жидкостной биопсии позволяет выявить опухоль на бессимптомной стадии. Молекулярно-генетические методы, такие как NGS и анализ ctDNA, предоставляют персонализированную информацию для подбора терапии.

Заключение: Прогресс в лабораторной диагностике онкологии толстой кишки играет ключевую роль в повышении эффективности лечения и улучшении прогноза. Современные методы диагностики не только облегчили задачу раннего выявления заболевания, но и сделали возможным персонализированный подход к лечению, ориентированный на молекулярные особенности опухоли. Развитие этих технологий продолжает менять парадигму борьбы с колоректальным раком, делая диагностику менее инвазивной и более точной.

Литература:

- 1. **Arnold M., et al.** Global burden of colorectal cancer: Trends and projections to 2030. International Journal of Cancer. 2017;140(6):1213-1221.
- 2. **Siegel R.L., et al.** Colorectal cancer statistics, 2023. CA: A Cancer Journal for Clinicians. 2023;73(3):233-248.
- 3. **Zou H., et al.** Epigenetic biomarkers in the early detection of colorectal cancer. Gastroenterology. 2020;158(4):929-944.
- 4. **Chakrabarti S., et al.** Circulating tumor DNA in colorectal cancer: Current status and future perspectives. Journal of Clinical Oncology. 2021;39(10):1101-1111.
- 5. **Luo C., et al.** Advances in microbiome research for colorectal cancer. Trends in Cancer. 2022;8(2):101-114.
- 6. **Ahmed M.F., et al.** NGS in colorectal cancer: Applications in precision medicine. Molecular Oncology. 2021;15(3):580-599.
- 7. **Moss A.C., et al.** The role of calprotectin in diagnosing colorectal neoplasia. Clinical Chemistry and Laboratory Medicine. 2020;58(1):15-26.
- 8. **Bosch L.J.W., et al.** DNA methylation markers for early detection of colorectal cancer: A systematic review. BMC Cancer. 2020;20(1):185.
- 9. **Hellinger M.D., et al.** Comprehensive genomic profiling in colorectal cancer management. Annals of Surgery. 2022;275(2):e264-e272.
- 10. **Mandel J.S., et al.** Screening for colorectal cancer with fecal DNA testing: A new era. New England Journal of Medicine. 2021;384(12):1174-1182.
- 11. Chen W., et al. Advances in immunohistochemical diagnostics for colorectal cancer. Diagnostic Pathology. 2020;15(1):23.
- 12. **Farrington S.M., et al.** Metabolic and genetic markers in colorectal cancer: Challenges and opportunities. Nature Reviews Cancer. 2023;23(8):548-563.
- 13. **Kuipers E.J., et al.** Colorectal cancer screening: Current status and perspectives. Gastroenterology. 2022;162(5):1257-1275.