SUNʼIY INTELLEKTDA BIOMEDITSINA SIGNALLARNI RAQAMLI ISHLASH ALGORITMLARINING SAMARADORLIGINI OSHIRISH

Authors

  • Norboyeva Mahliyo Rustamovna Author
  • Naimov Axadjon Tojimirza o‘g‘li Author

Keywords:

Biotibbiy signallar, raqamli ishlash, sun'iy intellekt, signalni ajratish, mashinaviy o'rganish, hisoblash samaradorligi, sog'liqni saqlash ilovalari.

Abstract

Ushbu tadqiqot sun'iy intellekt (SI) tizimlarida biotibbiy signallarni tahlil qilish uchun mo'ljallangan raqamli ishlash algoritmlarini takomillashtirishni o'rganadi. Tadqiqotda elektrokardiogramma (EKG) va elektroensefalogramma (EEG) tahlili kabi signalni qayta ishlash vazifalarida hisoblash samaradorligini optimallashtirish va aniqlikni saqlashga alohida e'tibor qaratilgan. Taklif etilgan usullar zamonaviy mashinaviy o'rganish texnikalari, signalni ajratish va shovqinni kamaytirish strategiyalarini o'z ichiga oladi, bu esa sog'liqni saqlashning real vaqt rejimidagi ilovalarini yaxshilashga xizmat qiladi.

Author Biographies

  • Norboyeva Mahliyo Rustamovna

    Muhammad al – Xorazmiy nomidagi TATU,

    Kompyuter tizimlari kafedrasi assistenti

    mahliyonorboyeva15@gmail.com

    +998 99 155 74 95

  • Naimov Axadjon Tojimirza o‘g‘li

    Muhammad al – Xorazmiy nomidagi TATU, Texnologiyalar transferi, inkubatsiya va akseleratsiya bo‘limi yetakchi mutaxassisi

    naimovahadjon@gmail.com

    +998 33 355 15 05

References

ADABIYOTLAR

1. Shulyak A. and Shachykov A. (2015) Development of principles for analyzing the structure of cyclic biomedical signals for their detection, recognition and classification. Vіsnik NTUU “KPІ”. Serіya Priladobuduvannya, No 49, pp. 169-179.

2. Pechenizkiy M., Tsymbal A., Puuronen S. and Pechenizkiy O. (2006) Class Noise and Supervised Learning in Medical Domains: The Effect of Feature Extraction. 19th IEEE Sym posium on Computer-Based Medical Systems (CBMS'06), pp. 708-713. DOI: 10.1109/cbms.2006.65

3. Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE (2000) PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation, No. 101(23), e215-e220. Available at: http://circ.ahajournals.org/cgi/content/full/101/23/e215

4. Soni J., Ansari U., Sharma D. and S. Soni (2011) Predictive Data Mining for Medical Diagnosis: An Overview of Heart Disease Prediction. International Journal of Computer Ap plications, Vol. 17, No. 8, pp. 43-48. DOI: 10.5120/2237-2860

5. Qeethara Kadhim Al-Shayea (2011) Artificial neural network in medical diagnosis. IJCSI International Journal of Computer Science, Vol. 8, Iss. 2, pp. 150-154.

6. Genkin A. A. (1999) New information technology of the analysis of medical data. OMIS program complex. St. Petersburg, Politekhnika Publ., 191 p. (in Russian)

7. Antomonov M. U. (2006) Mathematical processing and analysis of biomedical data, 558 p. (in Ukrainian).

8. Vasil'ev V. I. (1983) Recognition systems. Kiev, Naukova dumka ( in Russian).

9. Li M. and Zhou Z. H. (2007) Improve Computer-Aided Diagnosis With Machine Learn ing Techniques Using Undiagnosed Samples. IEEE Transactions on Systems, Man, and Cyber netics - Part A: Systems and Humans, Vol. 37, No. 6, pp. 1088-1098. DOI : 10.1109/tsmca.2007.904745

Published

2024-12-27

How to Cite

SUNʼIY INTELLEKTDA BIOMEDITSINA SIGNALLARNI RAQAMLI ISHLASH ALGORITMLARINING SAMARADORLIGINI OSHIRISH. (2024). Modern Education and Development, 16(13), 385-396. https://scientific-jl.org/mod/article/view/7556