SUNʼIY INTELLEKTDA BIOMEDITSINA SIGNALLARNI RAQAMLI ISHLASH ALGORITMLARINING SAMARADORLIGINI OSHIRISH
Keywords:
Biotibbiy signallar, raqamli ishlash, sun'iy intellekt, signalni ajratish, mashinaviy o'rganish, hisoblash samaradorligi, sog'liqni saqlash ilovalari.Abstract
Ushbu tadqiqot sun'iy intellekt (SI) tizimlarida biotibbiy signallarni tahlil qilish uchun mo'ljallangan raqamli ishlash algoritmlarini takomillashtirishni o'rganadi. Tadqiqotda elektrokardiogramma (EKG) va elektroensefalogramma (EEG) tahlili kabi signalni qayta ishlash vazifalarida hisoblash samaradorligini optimallashtirish va aniqlikni saqlashga alohida e'tibor qaratilgan. Taklif etilgan usullar zamonaviy mashinaviy o'rganish texnikalari, signalni ajratish va shovqinni kamaytirish strategiyalarini o'z ichiga oladi, bu esa sog'liqni saqlashning real vaqt rejimidagi ilovalarini yaxshilashga xizmat qiladi.
References
ADABIYOTLAR
1. Shulyak A. and Shachykov A. (2015) Development of principles for analyzing the structure of cyclic biomedical signals for their detection, recognition and classification. Vіsnik NTUU “KPІ”. Serіya Priladobuduvannya, No 49, pp. 169-179.
2. Pechenizkiy M., Tsymbal A., Puuronen S. and Pechenizkiy O. (2006) Class Noise and Supervised Learning in Medical Domains: The Effect of Feature Extraction. 19th IEEE Sym posium on Computer-Based Medical Systems (CBMS'06), pp. 708-713. DOI: 10.1109/cbms.2006.65
3. Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE (2000) PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation, No. 101(23), e215-e220. Available at: http://circ.ahajournals.org/cgi/content/full/101/23/e215
4. Soni J., Ansari U., Sharma D. and S. Soni (2011) Predictive Data Mining for Medical Diagnosis: An Overview of Heart Disease Prediction. International Journal of Computer Ap plications, Vol. 17, No. 8, pp. 43-48. DOI: 10.5120/2237-2860
5. Qeethara Kadhim Al-Shayea (2011) Artificial neural network in medical diagnosis. IJCSI International Journal of Computer Science, Vol. 8, Iss. 2, pp. 150-154.
6. Genkin A. A. (1999) New information technology of the analysis of medical data. OMIS program complex. St. Petersburg, Politekhnika Publ., 191 p. (in Russian)
7. Antomonov M. U. (2006) Mathematical processing and analysis of biomedical data, 558 p. (in Ukrainian).
8. Vasil'ev V. I. (1983) Recognition systems. Kiev, Naukova dumka ( in Russian).
9. Li M. and Zhou Z. H. (2007) Improve Computer-Aided Diagnosis With Machine Learn ing Techniques Using Undiagnosed Samples. IEEE Transactions on Systems, Man, and Cyber netics - Part A: Systems and Humans, Vol. 37, No. 6, pp. 1088-1098. DOI : 10.1109/tsmca.2007.904745