TASNIFLASH VA KLASTERLASH

Authors

  • Onarkulov Maqsadjon Karimberdiyevich Author
  • Tojimamatov Israiljon Nurmamatovich Author
  • Yusupov Mirsaid Abdulaziz o‘g‘li Author
  • Jamoliddinova Diyora Umidjon qizi Author

Keywords:

Tasniflash, Klasterlash, Nazoratli o'rganish, Nazoratsiz o'rganish, Guruhlash, Label., Classification, Clustering, Supervised learning, Unsupervised learning, Grouping, Labeling., классификация, кластеризация, обучение с учителем, обучение без учителя, группировка, маркировка.

Abstract

Tezisda ma'lumotlarni klasterlash va tasniflash haqida to'liq ma'lumot berib o'tiladi. Ularning afzalliklari, qo'llanish sohalari va ishlash prinsiplari aytib o'tiladi.

The thesis provides a detailed overview of data clustering and classification methods, discussing their advantages, application areas, and working principles.В тезисе подробно рассматриваются методы кластеризации и классификации данных. Описываются их преимущества, области применения и принципы работы.

Author Biographies

  • Onarkulov Maqsadjon Karimberdiyevich

    Farg’ona davlat unversiteti amaliy matematika va

     informatika kafedrasi dotsenti

    maxmaqsad@gmail.com

  • Tojimamatov Israiljon Nurmamatovich

    Farg’ona davlat unversiteti amaliy matematika va informatika kafedrasi katta oʻqituvchisi   isik80@mail.ru

  • Yusupov Mirsaid Abdulaziz o‘g‘li

    Farg’ona davlat unversiteti amaliy matematika va informatika kafedrasi o‘qituvchisi  mirsaidbeky@gmail.com

  • Jamoliddinova Diyora Umidjon qizi

    Farg’ona davlat universiteti 3-kurs talabasi,

    jamoldinovadiyora07@gmail.com

References

FOYDALANILGAN ADABIYOTLAR

1.Pétrowski, Alain; Ben-Hamida, Sana (2017). Evolutionary algorithms. John Wiley & Sons. p. 30. ISBN 978-1-119-13638-5.

2.Mitchell 1996, p. 2.

3.Gerges, Firas; Zouein, Germain; Azar, Danielle (12 March 2018). "Genetic Algorithms with Local Optima Handling to Solve Sudoku Puzzles". Proceedings of the 2018 International Conference on Computing and Artificial Intelligence. ICCAI 2018. New York, NY, USA: Association for Computing Machinery. pp. 19–22. doi:10.1145/3194452.3194463. ISBN 978-1-4503-6419-5. S2CID 44152535.

4.Burkhart, Michael C.; Ruiz, Gabriel (2023). "Neuroevolutionary representations for learning heterogeneous treatment effects". Journal of Computational Science. 71: 102054. doi:10.1016/j.jocs.2023.102054. S2CID 258752823.

5.Whitley 1994, p. 66.

6.Luque-Rodriguez, Maria; Molina-Baena, Jose; Jimenez-Vilchez, Alfonso; Arauzo-Azofra, Antonio (2022). "Initialization of Feature Selection Search for Classification (sec. 3)". Journal of Artificial Intelligence Research. 75: 953–983. doi:10.1613/jair.1.14015.

7.Eiben, A. E. et al (1994). "Genetic algorithms with multi-parent recombination". PPSN III: Proceedings of the International Conference on Evolutionary Computation. The Third Conference on Parallel Problem Solving from Nature: 78–87. ISBN 3-540-58484-6.

8.Ting, Chuan-Kang (2005). "On the Mean Convergence Time of Multi-parent Genetic Algorithms Without Selection". Advances in Artificial Life: 403–412. ISBN 978-3-540-28848-0.

9.Deb, Kalyanmoy; Spears, William M. (1997). "C6.2: Speciation methods". Handbook of Evolutionary Computation. Institute of Physics Publishing. S2CID 3547258.

10.Shir, Ofer M. (2012). "Niching in Evolutionary Algorithms". In Rozenberg, Grzegorz; Bäck, Thomas; Kok, Joost N. (eds.). Handbook of Natural Computing. Springer Berlin Heidelberg. pp. 1035–1069. doi:10.1007/978-3-540-92910-9_32. ISBN 9783540929093.

Published

2024-12-19

How to Cite

TASNIFLASH VA KLASTERLASH. (2024). Modern Education and Development, 16(7), 257-262. https://scientific-jl.org/mod/article/view/6411