MASHMIXER DASTURIDAN FOYDALANGAN HOLDA POLILAKTIK KISLOTA (PLA) BIOMATERIALLARINI LOYIHALASH VA MODELLASHTIRISH VA 3D BIOPRINTER ORQALI ISHLAB CHIQARISH
Keywords:
Kalit so'zlar: polilaktik kislota (PLA,MashMixer dastur,3D Bioprinterda chop etish,to'qimalar muhandisligi,suyak regeneratsiyasi,madel dizayni,biomoslashuvchan materiallar,bemorga xos implantlar,hisoblash modellashtirish,biologik parchalanadigan polimerlar.Abstract
Maqola annotatsiyasi: Regenerativ tibbiyotda kompyuter modellashtirish va 3D Bioprinterda chop etishdan foydalanish bemorga xos implantlarning rivojlanishida inqilob qildi. Ushbu tadqiqot MashMixer dasturidan foydalangan holda polilaktik kislota (PLA) biomateriallarini loyihalash va modellashtirish, so'ngra 3D bioprinter orqali ishlab chiqarishni o'rganadi. PLA, biologik parchalanadigan va biologik mos keluvchi polimer, mukammal mexanik xususiyatlari va boshqariladigan degradatsiyasi tufayli suyak to'qimalari muhandisligida keng qo'llaniladi.
References
1. Chen, Q., & Ding, J. (2009). Poly(lactic acid) based biomaterials: Synthesis, modification and applications. Biomaterials, 30(3), 1236-1246.
2. Ravi Kumar, M. N. V. (2000). Polymeric drug delivery systems: an overview. Biomaterials, 21(23), 2035-2043.
3. Thompson, M., & Kearney, T. (2015). 3D printing of biomaterials: An overview of the technological challenges. Biotechnology Advances, 33(2), 137-150.
4. Hollander, A., & De Beer, T. (2018). Recent advances in the application of 3D printing in tissue engineering. Current Opinion in Biotechnology, 53, 45-52.
5. Agarwal, S., & Rizvi, S. (2016). Recent advances in biocompatible 3D printing of biomaterials for tissue engineering applications. Journal of Materials Science: Materials in Medicine, 27(9), 126.
6. Rizzo, R., et al. (2018). Additive manufacturing of biocompatible and biodegradable PLA-based structures for medical applications. Materials Science and Engineering: C, 82, 168-179.
7. Liu, Z., et al. (2020). Designing PLA-based biomaterials for tissue engineering applications: A review. Materials Science and Engineering: C, 107, 110249.
8. Pati, F., et al. (2014). Biomimetic 3D tissue printing for drug testing and regenerative medicine. Materials Today, 17(2), 87-95.
9. Li, J., et al. (2019). Polymer-based biomaterials for 3D printing in regenerative medicine. Progress in Polymer Science, 91, 1-19.
10. Gaharwar, A. K., et al. (2016). Polymeric nanocomposites for 3D printing applications in tissue engineering. Biomaterials, 108, 98-113.
11. Wang, X., et al. (2020). 3D printing of functional biomaterials: Opportunities and challenges. Materials Today, 33, 1-17.
12. Shirwaikar, A., et al. (2006). Polymeric biomaterials for drug delivery: Current progress and future directions. Drug Development and Industrial Pharmacy, 32(2), 167-182.
13. Marques, A. P., et al. (2019). 3D printing for biomedical applications: A review of recent advances. Materials, 12(2), 370.
14. Bertoluzza, C., et al. (2016). PLA-based materials for 3D printing applications in regenerative medicine. Journal of Applied Biomaterials & Functional Materials, 14(3), 212-221.
15. Chia, H. N., & Wu, B. M. (2015). Recent advances in 3D printing of biomaterials. Journal of Biological Engineering, 9(1), 4.
16. Hong, L., et al. (2018). Polymer-based materials for 3D printing in tissue engineering. Biofabrication, 10(3), 031001.
17. Vijayavenkataraman, S., et al. (2018). 3D printing of biomaterials for tissue engineering and regenerative medicine applications. Bioprinting, 10, 1-14.
18. Berthet, N., et al. (2018). Fabrication and mechanical properties of 3D-printed PLA scaffolds for tissue engineering applications. Journal of Applied Polymer Science, 135(13), 46073.
19. Praveen, M., & Kumar, M. (2017). Polymeric scaffolds for 3D printing of bone tissue engineering. Biomaterials Science, 5(3), 374-390.