BIRINCHI DARAJADAGI MANTIQIY TO’PLAMLAR ASOSIDA KO’P DARAJALI AXBOROT TIZIMLARIDA QAROR QABUL QILISH MODELLARI
Keywords:
Kalit so’z: Bellman optimalligi, genetik algoritmlar, ko‘p bosqichli qaror qabul qilish tizimlari, dinamik dasturlash, Markov qaror jarayonlari (MDP), matematik modellashtirish, birinchi darajadagi mantiqiy to‘plamlar (FOL), fitnes funktsiyasi, optimal siyosatni aniqlash.Abstract
Annotatsiya: Ushbu maqolada Bellman optimalligi va genetik algoritmlar yordamida ko‘p bosqichli qaror qabul qilish tizimlarini optimallashtirish masalalari tahlil qilingan. Markov qaror jarayonlari (MDP) va birinchi darajadagi mantiqiy to‘plamlar (FOL) asosida qaror qabul qilish modellarining matematik asoslari ko‘rib chiqilgan. Fitnes funktsiyasi, selektsiya, krossover va mutatsiya kabi genetik algoritm elementlari yordamida optimal siyosatni aniqlash usullari va algoritmlarning samaradorligi baholangan. Noaniqlik sharoitida qaror qabul qilish, Bayesian qaror qabul qilish nazariyasi, RMSE va MAE metrikalari orqali genetik algoritmlarning natijalari tahlil qilinadi. Ushbu yondashuv ko‘p darajali axborot tizimlarini optimallashtirishda va vaqt hamda resurslarni tejashda samarali yechim ekanligi ko‘rsatilgan.
References
1. Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Publishing Company.
2. Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press.
3. Mitchell, M. (1996). An Introduction to Genetic Algorithms. MIT Press.
4. Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs. Springer.
5. De Jong, K. A. (2006). Evolutionary Computation: A Unified Approach. MIT Press.
6. Simon, D. (2013). Evolutionary Optimization Algorithms. Wiley.
7. Bellman, R. (1957). Dynamic Programming. Princeton University Press.
8. Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction (2nd ed.). MIT Press.
9. Fogel, D. B. (2006). Evolutionary Computation: Toward a New Philosophy of Machine Intelligence (3rd ed.). IEEE Press.
10. Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press.
11. Eiben, A. E., & Smith, J. E. (2003). Introduction to Evolutionary Computing. Springer.
12. Whitley, D. (1994). A Genetic Algorithm Tutorial. Statistics and Computing, 4(2), 65-85.
13. Zitzler, E., Deb, K., & Thiele, L. (2000). Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation, 8(2), 173-195.
14. Schwefel, H. P. (1995). Evolution and Optimum Seeking. John Wiley & Sons.
15. Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. Wiley.
16. Reeves, C. R., & Rowe, J. E. (2002). Genetic Algorithms: Principles and Perspectives. Springer.
17. Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic Robotics. MIT Press.
18. Russell, S., & Norvig, P. (2020). Artificial Intelligence: A Modern Approach (4th ed.). Pearson.
19. Luke, S. (2013). Essentials of Metaheuristics. Lulu.com.
20. Yao, X., & Liu, Y. (1997). A New Evolutionary System for Evolving Artificial Neural Networks. IEEE Transactions on Neural Networks, 8(3), 694-713.
21. Holland, J. H. (1992). Genetic Algorithms. Scientific American, 267(1), 66-72.
22. Dorigo, M., & Stützle, T. (2004). Ant Colony Optimization. MIT Press.
23. Kennedy, J., & Eberhart, R. (1995). Particle Swarm Optimization. In Proceedings of IEEE International Conference on Neural Networks (pp. 1942-1948). IEEE Press.
24. Grefenstette, J. J. (1986). Optimization of Control Parameters for Genetic Algorithms. IEEE Transactions on Systems, Man, and Cybernetics, 16(1), 122-128.
25. Hart, W. E., & Moore, R. E. (1998). A Genetic Algorithm for Constrained Optimization. Computers & Operations Research, 25(12), 1175-1195.
26. Back, T., Fogel, D. B., & Michalewicz, Z. (1997). Handbook of Evolutionary Computation. CRC Press.
27. LaValle, S. M. (2006). Planning Algorithms. Cambridge University Press.
28. Koza, J. R. (1994). Genetic Programming II: Automatic Discovery of Reusable Programs. MIT Press.