MORPHOMETRIC, X-RAY-ANATOMICAL, AND NEUROLOGICAL CHARACTERISTICS OF THE CEREBRAL VENTRICLES IN CRANIAL INJURIES: INSIGHTS AND ADVANCES IN TREATMENT
Keywords:
Keywords: cranial injuries, cerebral ventricles, morphometry, X-ray anatomy, traumatic brain injury, cerebrospinal fluid, neurological features.Abstract
Cranial injuries, including concussions and severe traumatic brain injuries (TBIs), profoundly affect the cerebral ventricles, which play a critical role in maintaining cerebrospinal fluid (CSF) circulation and intracranial pressure. Post-traumatic changes, such as ventricular enlargement, deformation, and displacement, correlate with neurological outcomes and secondary complications, including hydrocephalus and post-traumatic epilepsy. This article reviews the morphometric, X-ray-anatomical, and neurological features of the cerebral ventricles in cranial injuries, emphasizing the diagnostic and therapeutic implications. Advances in imaging techniques and treatment modalities have improved clinical outcomes, but significant challenges remain in predicting long-term prognosis and tailoring personalized interventions.
References
1. Yo’ldosheva N.Q. “ Features and dynamics of disordes of cognitive and static-locomotor functions in chronic brain ischemia”. Journal of GALAXY INTERNATIONAL INTERDISCIPLINARY RESEARCH JOURNAL (GIIRJ) ISSN (E): 2347-6915 Vol. 11, Issue 10, Oct. (2023) https://internationaljournals.co.in/index.php/giirj/article/view/4466
2. Yo’ldosheva N.Q. “Морфологический аспекты нарушение мелкый моторики при хроническкий ишемии головного мозга” Journal of Iqro volume 7, issue 1 - 2023 special issue (pp. 94-99)
https://wordlyknowledge.uz/index.php/iqro/article/view/3245
3. Yo’ldosheva N.Q. “Morphological aspects of static-locomotor function disorders in chronic cerebral ischemia” Journal of International Journal of Medical Sciences And Clinical Research (ISSN – 2771-2265) VOLUME 03 ISSUE 12 PAGES: 7-12 http://theusajournals.com/index.php/ijmscr/article/view/2002
4. Capizzi A, Wu J, Verdusco-Gutierrez M. Traumatic brain injury: a review of epidemiology, pathophysiology and medical management. Medical Clinics of North America. 2020; 104(2): 213-238.
5. Chen HR, Chen CW, Kuo YM, Chen B, Kuan IS, Huang H, Lee J, Anthony N, Kuan CY, Sun YY. Monocytes promote acute neuroinflammation and become pathological microglia in neonatal hypoxic-ischemic brain injury. //Theranostics. 2022 Jan 1;12(2):512-529.
6. Fogel MA, Pawlowski T, Schwab PJ, Nicolson SC, Montenegro LM, Berenstein LD, Spray TL, Gaynor JW, Fuller S, Keller MS, Harris MA, Whitehead KK, Vossough A, Licht DJ. Brain magnetic resonance immediately before surgery in single ventricles and surgical postponement. //Ann Thorac Surg. 2014 Nov;98(5):1693-8
7. Gaggi NL, Ware JB, Dolui S, Brennan D, Torrellas J, Wang Z, Whyte J, Diaz-Arrastia R, Kim JJ. Temporal dynamics of cerebral blood flow during the first year after moderate-severe traumatic brain injury: A longitudinal perfusion MRI study. //Neuroimage Clin. 2023;37:103344.
8. Hagberg H, Mallard C, Ferriero DM, Vannucci SJ, Levison SW, Vexler ZS. et al. The role of inflammation in perinatal brain injury. //Nat Rev Neurol. 2015;11:192–208.
9. Hayashi Y, Jinnou H, Sawamoto K, Hitoshi S. Adult neurogenesis and its role in brain injury and psychiatric diseases.// J Neurochem. 2018 Dec;147(5):584-594
10. Likhterman B. L. The emergence of a medical specialty (with particular reference to neurosurgery). Part ii. Natural science factor //Sechenov Medical Journal. – 2022. – №. 4. – С. 80-85.
11. Ma XY, Yang TT, Liu L, Peng XC, Qian F, Tang FR. Ependyma in Neurodegenerative Diseases, Radiation-Induced Brain Injury and as a Therapeutic Target for Neurotrophic Factors. Biomolecules. 2023 Apr 27;13(5):754
12. Maas E, Menon DC, Adelson PD, Andelik N, Bell MJ, Belli A, et al. Traumatic brain injury: integrated approaches to improve prevention, clinical care and research.// Lancet Neurol. 2017; 16(12): 987-1048.
13. Nelson SE, Sair HI, Stevens RD. Magnetic Resonance Imaging in Aneurysmal Subarachnoid Hemorrhage: Current Evidence and Future Directions. //Neurocrit Care. 2018 Oct;29(2):241-252.
14. Ni W, Zheng M, Xi G, Keep RF, Hua Y. Role of lipocalin-2 in brain injury after intracerebral hemorrhage. //J Cereb Blood Flow Metab. 2015 Sep;35(9):1454-61.
15. Pang J, Peng J, Yang P, Kuai L, Chen L, Zhang JH, Jiang Y. White Matter Injury in Early Brain Injury after Subarachnoid Hemorrhage. //Cell Transplant. 2019 Jan;28(1):26-35.
16. Shishido H, Toyota Y, Hua Y, Keep RF, Xi G. Role of lipocalin 2 in intraventricular haemoglobin-induced brain injury. //Stroke Vasc Neurol. 2016 Jun 24;1(2):37-43.
17. Sun D. Endogenous neurogenic cell response in the mature mammalian brain following traumatic injury. Exp Neurol. 2016 Jan;275 Pt 3(0 3):405-410.
18. Trofimov AO, Agarkova DI, Trofimova KA, Nemoto EM, Bragina OA, Bragin DE. Arteriovenous cerebral blood flow correlation in moderate-to-severe traumatic brain injury: CT perfusion study. Brain Spine. 2023 Sep 21;3:102675.
19. Yang D, Sun YY, Bhaumik SK, Li Y, Baumann JM, Lin X. et al. Blocking lymphocyte trafficking with FTY720 prevents inflammation-sensitized hypoxic-ischemic brain injury in newborns. //J Neurosci. 2014;34:16467–81.
20. Ye L, Tang X, Zhong J, Li W, Xu T, Xiang C, Gu J, Feng H, Luo Q, Wang G. Unraveling the complex pathophysiology of white matter hemorrhage in intracerebral stroke: A single-cell RNA sequencing approach. CNS Neurosci Ther. 2024 Mar;30(3):e14652.
21. Zhang Y, Zeng H, Lou F, Tan X, Zhang X, Chen G. SLC45A3 Serves as a Potential Therapeutic Biomarker to Attenuate White Matter Injury After Intracerebral Hemorrhage. //Transl Stroke Res. 2024 Jun;15(3):556-571.