COMPARATIVE ANALYSIS OF RENEWABLE ENERGY SOURCES FOR INTERNAL COMBUSTION ENGINES IN AUTOMOBILES: THE ROLE OF HYDROGEN-GASOLINE BLENDS

##article.authors##

  • Sharipov Alisher Kalbayevich ##default.groups.name.author##

##semicolon##

Key words: Renewable Energy Sources, Internal Combustion Engines (ICE), Hydrogen-Gasoline Blends, Comparative Analysis, Automobile Emissions, Alternative Fuels, Hydrogen Fuel, Fuel Efficiency, Greenhouse Gas Reduction, Sustainable Mobility, Hydrogen Combustion, Fuel Additives, Combustion Efficiency, Renewable Energy-Powered Vehicles, Energy Storage and Distribution, Engine Compatibility, Hydrogen Storage Solutions, Performance Analysis, Hybrid Fuel System, Environmental Impact Assessment.

##article.abstract##

The transition from fossil fuels to renewable energy in the automotive sector is 
critical for reducing greenhouse gas emissions and achieving sustainability. This paper 
presents  a  comprehensive  comparative  analysis  of  renewable  energy  sources  for 
automobiles, focusing on hydrogen, electric, biofuel, synthetic fuel, and solar energy 
options.  Specifically,  it  evaluates  hydrogen  as  a  gasoline  additive  in  internal 
combustion  engines  (ICEs)  and  compares  its  potential  and  limitations  with  other 
renewable  sources  in  terms  of  efficiency,  environmental  impact,  cost,  and 
infrastructure. The findings highlight the promise and challenges of hydrogen-gasoline 
blends  and  outline  key  considerations  for  the  future  adoption  of  renewables  in  the 
automotive industry. 

##submission.citations##

References

1. Dicks, A. L., & O'Hayre, R. (2015). Hydrogen production and utilization in fuel cell

systems. Hydrogen Energy: Challenges and Perspectives, 23-41.

https://doi.org/10.1007/978-3-319-14948-9_3

2. International Energy Agency (IEA). (2023). Global EV Outlook 2023: The drive to

electric cars and beyond. IEA. https://www.iea.org/reports/global-ev-outlook-2023

3. Balat, M., & Balat, H. (2009). Biomass energy in the world and China: A review.

Renewable and Sustainable Energy Reviews, 13(9), 1501-1509.

https://doi.org/10.1016/j.rser.2009.02.003

4. Mohr, A., & Rios, J. L. (2021). The role of synthetic fuels in a carbon-neutral

transport system. Journal of Cleaner Production, 285, 125423.

https://doi.org/10.1016/j.jclepro.2020.125423

5. Xu, M., & Li, Y. (2022). Applications of solar energy in electric vehicles: Review

and perspectives. Renewable and Sustainable Energy Reviews, 148, 111414.

https://doi.org/10.1016/j.rser.2021.111414

6. Züttel, A., & Wang, L. (2020). Hydrogen storage technologies for transportation

applications: A review. Energy & Environmental Science, 13(8), 2536-2548.

https://doi.org/10.1039/D0EE01804A

7. Gorman, W. (2021). A life cycle analysis of biofuels in automotive transportation:

Comparative environmental impacts of biofuels and electric vehicles. Journal of

Environmental Science and Technology, 54(7), 4021-4030.

https://doi.org/10.1021/es4065317

8. Patel, V., & Bhardwaj, P. (2018). Infrastructure development for hydrogen fueling

stations: Global perspectives and challenges. Energy Policy, 120, 149-158.

https://doi.org/10.1016/j.enpol.2018.05.040

9. Yilmaz, M., & Krein, P. T. (2020). Cost comparison of battery electric and

hydrogen fuel cell vehicles in terms of market adoption and production scalability.

IEEE Transactions on Transportation Electrification, 6(1), 13-25.

https://doi.org/10.1109/TTE.2020.2967948

10. Ajanovic, A., & Haas, R. (2018). The future of renewable energy technologies in

the automotive sector. Renewable and Sustainable Energy Reviews, 92, 604-616.

https://doi.org/10.1016/j.rser.2018.05.057

11. Osman, A.I., Mehta, N., Elgarahy, A.M. et al. Hydrogen production, storage,

utilisation and environmental impacts: a review. Environ Chem Lett 20, 153–188

(2022). https://doi.org/10.1007/s10311-021-01322-8

##submission.downloads##

##submissions.published##

2024-11-09