TUB SONLARNI HOSIL QILISH USULLARI VA ULARNING TAQSIMOTI
##semicolon##
Kalit so‘zlar: pseudo-tasodifiy, tub sonlar, Evklid.Abstrak
Annotatsiya: tub sonlar kriptografik tizimlarning eng quyi va asosiy qismini
tashkil etganligi va ularning chidamliligini belgilaydigan unsur bo‘lganligi sababli tub
sonlarni to‘g’ri tanlash, ularni turli usullar bilan hosil qilish muhim hisoblanadi.
Ularning chidamliligini tekshirish uchun esa bir qancha algoritmlarni o‘z ichiga olgan
test sinovlarni mavjud. Ushbu maqolada yuqorida sanab o‘tilgan testlar, ularning
ishlash tartibi va kriptologik ahamiyati yoritilgan. Hamda tub sonlarning son o‘qida
yoyilishi ham ma’lum teoremalar va grafiklar yordamida yoritildi.
##submission.citations##
Foydalanilgan adabiyotlar:
1. Koukoulopoulos, D. (2019). The distribution of prime numbers (Vol. 203).
American Mathematical Soc.
2. Blum, L., Blum, M., & Shub, M. (1986). A simple unpredictable pseudo-random
number generator. SIAM Journal on computing, 15(2), 364-383.
3. Bhattacharjee, K., & Das, S. (2022). A search for good pseudo-random number
generators: Survey and empirical studies. Computer Science Review, 45, 100471.
4. Obaid, T. S. (2020). Study a public key in RSA algorithm. European Journal of
Engineering and Technology Research, 5(4), 395-398.
5. Ezz-Eldien, A., Ezz, M., Alsirhani, A., Mostafa, A. M., Alomari, A., Alserhani, F.,
& Alshahrani, M. M. (2024). Computational challenges and solutions: Prime
number generation for enhanced data security. PloS one, 19(11), e0311782.
6. Пер. с англ. / Под ред. и с предисл. В. Н. Чубарикова. - М.: УРСС: Книжный
дом “ЛИБРОКОМ ”, 2011.-664 с
7. Joye, M., Paillier, P., & Vaudenay, S. (2000). Efficient generation of prime
numbers. In Cryptographic Hardware and Embedded Systems—CHES 2000:
Second International Workshop Worcester, MA, USA, August 17–18, 2000
Proceedings 2 (pp. 340-354). Springer Berlin Heidelberg.