MASHMIXER DASTURIDAN FOYDALANGAN HOLDA POLILAKTIK KISLOTA (PLA) BIOMATERIALLARINI LOYIHALASH VA MODELLASHTIRISH VA 3D BIOPRINTER ORQALI ISHLAB CHIQARISH.
##semicolon##
Kalit so'zlar: polilaktik kislota (PLA,MashMixer dastur,3D Bioprinterda chop etish,to'qimalar muhandisligi,suyak regeneratsiyasi,madel dizayni,biomoslashuvchan materiallar,bemorga xos implantlar,hisoblash modellashtirish,biologik parchalanadigan polimerlar.##article.abstract##
Maqola annotatsiyasi: Regenerativ tibbiyotda kompyuter modellashtirish va
3D Bioprinterda chop etishdan foydalanish bemorga xos implantlarning rivojlanishida
inqilob qildi. Ushbu tadqiqot MashMixer dasturidan foydalangan holda polilaktik
kislota (PLA) biomateriallarini loyihalash va modellashtirish, so'ngra 3D bioprinter
orqali ishlab chiqarishni o'rganadi. PLA, biologik parchalanadigan va biologik mos
keluvchi polimer, mukammal mexanik xususiyatlari va boshqariladigan degradatsiyasi
tufayli suyak to'qimalari muhandisligida keng qo'llaniladi.
##submission.citations##
Foydalanilgan adabiyotlar ro‘yxati:
1. Chen, Q., & Ding, J. (2009). Poly(lactic acid) based biomaterials: Synthesis,
modification and applications. Biomaterials, 30(3), 1236-1246.
2. Ravi Kumar, M. N. V. (2000). Polymeric drug delivery systems: an overview.
Biomaterials, 21(23), 2035-2043.
3. Thompson, M., & Kearney, T. (2015). 3D printing of biomaterials: An overview
of the technological challenges. Biotechnology Advances, 33(2), 137-150.
4. Hollander, A., & De Beer, T. (2018). Recent advances in the application of 3D
printing in tissue engineering. Current Opinion in Biotechnology, 53, 45-52.
5. Agarwal, S., & Rizvi, S. (2016). Recent advances in biocompatible 3D printing of
biomaterials for tissue engineering applications. Journal of Materials Science:
Materials in Medicine, 27(9), 126.
6. Rizzo, R., et al. (2018). Additive manufacturing of biocompatible and
biodegradable PLA-based structures for medical applications. Materials Science
and Engineering: C, 82, 168-179.
7. Liu, Z., et al. (2020). Designing PLA-based biomaterials for tissue engineering
applications: A review. Materials Science and Engineering: C, 107, 110249.
8. Pati, F., et al. (2014). Biomimetic 3D tissue printing for drug testing and
regenerative medicine. Materials Today, 17(2), 87-95.
9. Li, J., et al. (2019). Polymer-based biomaterials for 3D printing in regenerative
medicine. Progress in Polymer Science, 91, 1-19. 10. Gaharwar, A. K., et al. (2016). Polymeric nanocomposites for 3D printing
applications in tissue engineering. Biomaterials, 108, 98-113.
11. Wang, X., et al. (2020). 3D printing of functional biomaterials: Opportunities and
challenges. Materials Today, 33, 1-17.
12. Shirwaikar, A., et al. (2006). Polymeric biomaterials for drug delivery: Current
progress and future directions. Drug Development and Industrial Pharmacy,
32(2), 167-182.
13. Marques, A. P., et al. (2019). 3D printing for biomedical applications: A review
of recent advances. Materials, 12(2), 370.
14. Bertoluzza, C., et al. (2016). PLA-based materials for 3D printing applications in
regenerative medicine. Journal of Applied Biomaterials & Functional Materials,
14(3), 212-221.
15. Chia, H. N., & Wu, B. M. (2015). Recent advances in 3D printing of biomaterials.
Journal of Biological Engineering, 9(1), 4.
16. Hong, L., et al. (2018). Polymer-based materials for 3D printing in tissue
engineering. Biofabrication, 10(3), 031001.
17. Vijayavenkataraman, S., et al. (2018). 3D printing of biomaterials for tissue
engineering and regenerative medicine applications. Bioprinting, 10, 1-14.
18. Berthet, N., et al. (2018). Fabrication and mechanical properties of 3D-printed
PLA scaffolds for tissue engineering applications. Journal of Applied Polymer
Science, 135(13), 46073.
19. Praveen, M., & Kumar, M. (2017). Polymeric scaffolds for 3D printing of bone
tissue engineering. Biomaterials Science, 5(3), 374-390.