3D BIOPRINTER YORDAMIDA CHOP ETISH JARAYONIDA YUZAGA KELGAN XATO VA KAMCHILIKLAR VA ULARNI TUZATISH
##semicolon##
Kalit so'zlar: Ekstruziya stavkalari,Hujayra hayotiyligi,Qatlamning noto'g'ri joylashishi,Termal nomuvofiqliklar,Regenerativ tibbiyot,Biologik to'qimalar,Mexanik barqarorlik,Kesish stressi,Hujayra o'limi,Reologik xususiyatlar,Real vaqtda monitoring,Adaptiv bosib chiqarish,Kalibrlash protokollari,Bioink formulalari,Termal nazoratmSilliq ekstruziya,Qatlam tizalanishi.Abstrak
Maqola annotatsiyasi: 3D bioprinting texnologiyasining jadal rivojlanishi
regenerativ tibbiyot va to‘qimalar muhandisligida yangi chegaralarni ochib, terapevtik
qo‘llanmalar uchun murakkab biologik tuzilmalarni yaratish imkonini berdi. O'zining
istiqbolli salohiyatiga qaramay, bioprinting jarayoni o'z-o'zidan bosilgan
konstruktsiyalarning yaxlitligi va funksionalligini buzishi mumkin bo'lgan xato va
kamchiliklar bilan to'la.
##submission.citations##
Foydalanilgan adabiyotlar ro‘yxati:
1. Gao, Q., et al. (2017). "Challenges in 3D bioprinting: Materials, technologies, and
applications." Biomaterials Science, 5(8), 1595–1612.
2. Bertsch, A., et al. (2019). "Current challenges in the use of bioprinting technologies
in regenerative medicine." Biofabrication, 11(4), 044103.
3. Mota, C., et al. (2020). "Addressing the challenges of 3D bioprinting for tissue
engineering applications." Materials, 13(12), 2752.
4. Zhao, X., et al. (2016). "Bioprinting of 3D tissues and organs." Journal of Industrial
Microbiology & Biotechnology, 43(7), 697-711.
5. Ng, W. L., et al. (2016). "Print me an organ! 3D bioprinting technologies in tissue
engineering." Biotechnology Advances, 34(4), 741-749.
6. Hollister, S. J., et al. (2019). "Challenges and opportunities for bioprinting in tissue
engineering." Annals of Biomedical Engineering, 47(8), 1681-1697.
7. Zhang, Y. S., et al. (2017). "3D bioprinting for tissue and organ fabrication." Annals
of Biomedical Engineering, 45(1), 63-72.
8. Feng, X., et al. (2020). "Development and challenges of bioprinting technologies
for tissue engineering." Materials Science and Engineering: C, 110, 110577.
9. Zhao, W., et al. (2020). "Optimization of 3D bioprinting parameters for tissue
engineering applications." Journal of Materials Science & Technology, 41, 128-
134.
10. Kundu, J., et al. (2017). "Bioinks for 3D bioprinting: Recent developments and
future perspectives." Biomaterials, 140, 36–56.
11. Shi, J., et al. (2017). "The application of 3D bioprinting in the creation of complex
tissue constructs." Biotechnology Journal, 12(4), 1600750.
12. Wu, Y., et al. (2020). "Recent progress in 3D bioprinting: Challenges and future
directions." Journal of Biomedical Materials Research Part B: Applied
Biomaterials, 108(3), 1590-1606.
13. Lee, A., et al. (2019). "Bioprinting for tissue engineering: A review of recent
advances and future perspectives." Progress in Materials Science, 101, 62-74.
14. Zhang, W., et al. (2020). "Bioprinting and its applications in tissue engineering and
regenerative medicine." Bioengineering, 7(3), 74.
15. Jiang, L., et al. (2018). "Challenges and solutions in 3D bioprinting of tissues and
organs." Journal of Tissue Engineering and Regenerative Medicine, 12(9), 1897-
1914.
16. Gao, G., et al. (2019). "Recent advances in 3D bioprinting and its application in
tissue engineering." Advanced Drug Delivery Reviews, 148, 126-137.
17. Zhao, M., et al. (2018). "The role of 3D bioprinting in regenerative medicine."
Biotechnology Advances, 36(1), 94-108.