MAGNETIC RESISTANCE OF YBaCuO, GdBaCuO HTSC TAPES IRRADIATED WITH 1–5 MeV ELECTRONS AND 60Co GAMMA RAYS

Authors

  • Akhmad Abdunabievich Shodiev Author
  • Malika Anvarovna Mussaeva Author
  • Elmurotova Dilnoza Baxtiyorovna Author

Keywords:

Key words: HTSC tape, YBCO, GdBCO, electron irradiation, 60Co gamma-irradiation, defect ordering, superconducting transition of the second type, magnetoresistance, radiation technologies, pinning centers.

Abstract

Abstract. The article presents Hall effect (80–320 K at magnetic field 0.556 Tesla) data in YBCO, GdBCO microfilm on 276-steel tape with metal coating exposed. The tape samples were irradiated with an electron beam with an energy of 5 MeV at currents of 400 nA and 1 mА with fluences of 1014, 5×1014 and 1015 el/cm2 in air at 273 K and 60Co gamma-quanta of 1.17–1.33 MeV in the dose range 105–106 R at liquid nitrogen (77 K). This irradiation resulted in structure modification of microinterfaces YBCO-AgCu, ten times decrease in the magnetoresistance > Tc, increase in the 2-nd type phase transition steep. Below the radiation damage level of destroying the superconducting state, we found such structure modifications, when magnetic flux pinning centers are generated at the concentration of 1016–1017 cm-3 and both Tc and Jc increase. Such an optimized current vortex state exists in 80–320 K. As irradiation with 1–5 MeV electron and 1.17–1.33 MeV gamma flux do not produce long living radio-nuclides, it is affordable for industrial technology of radiation treatment of long cable by rewinding across the flux.

References

1. Wu M.K., Ashburn J.R., Torng C.J., Hor P.H., Meng R.L., Gao L., Huang Z.J., Wang Y.Q. and Chu C.W. (1987). Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys.Rev.Letters, 58(9), 908–910. doi.org/10.1103/PhysRevLett. 58.908.

2. Troitskya A.V., Demikhov T.E., Antonova L.Kh., Kuzmichev S.A., Skuratov V.A., Semina V.K., Mikhailova G.N. (2019). Effect of ion irradiation of GdBa2Cu3O7-x HTSC-2 tapes on the critical parameters of a superconductor. Physics of metals and metal science, 120(2), 143–147. doi:10.1134/S0015323019 010054.

3. Rupich M.W. (2015). Second-generation (2G) coated high-temperature superconducting cables and wires for power grid applications. Superconductors in the Power Grid, (4), 1–34.

4. Grigoriance A.G. Kulikov I.V., Shiganov I.N., Bauman N.E. (2017). Features of obtaining superconducting layer in second-generation high-temperature superconducting tapes by pulsed laser deposition method. Photonics, 4 (64), 22–33. doi:10.22184/1993-7296.2017.64.4.22.33.

5. Molodyk A, Samoilenkov S, Markelov A, Degtyarenko P, Lee S, Petrykin V, Gaifullin M, Mankevich A, Vavilov A, Sorbom B, Cheng J, Garberg S, Kesler L, Hartwig Z, Gavrilkin S, Tsvetkov A, Okada T, Awaji S, Abraimov D, Francis A, Bradford G, Larbalestier D, Senatore C, Bonura M, Pantoja AE, Wimbush SC, Strickland NM, Vasiliev A. (2021). Development and large volume production of extremely high current density YBa2Cu3O7 superconducting wires for fusion. Sci Rep, 11:2084. https:// doi.org/10.1038/s41598-021-81559-z.

6. Senatore C., Alessandrini M., Lucarelli A., Tediosi R., Uglietti D. and Iwasa Y. (2014). Progresses and Challenges in the Development of High-Field Solenoidal Magnets Based on RE123 Coated Conductors. Supercond. Sci. Technol. 27 (10) 103001 (26). doi:10.1088/0953-2048/27/10/103001.

7. Antonova L.Kh., Belov A.G., Voronov V.V., Didyk A.Yu., Demikhov E.I., Ivanov L.I., Malginov V.A., Mikhailova G.N., Troitsky A.V. (2011). Dependence of the critical parameters of a HTSC tape on fluences when irradiated with heavy ions and high-energy electrons. Surface. X-ray, synchrotron and neutron research, 5, 84–91.

8. Khadzhai G.Ya., Vovk N.R., Vovk R.V. (2019). Effect of electron irradiation on the transverse conductivity of a YBa2Cu3O7-δ single crystal. Low Temperature Physics/Physics of Low Temperatures, 45(1), 155–158.

9. Giapintzakis J., Lee W.C., Rice J.P., Ginsberg D.M., Robertson I.M., Wheeler R., Kirk M.A., and Ruault M.O. (1992). Production and identification of fiux-pinning defects by electron irradiation in YBa2Cu3O7-x single crystals. Phys. Rev. B, 45(18), 10677–10683. doi:https://doi.org/10.1103 /PhysRevB.45.10677.

10. Abrikosov A.A., Gor’kov L.P. (1961). Contribution to the theory of superconducting alloys with paramagnetic impurities. Sov.Phys.JETP. 12(6), 1243–1253.

11. https://ru.wikipedia.org/wiki/yttrium-barium-copper oxide.

12. Shchukin A.E. (2022). Synthesis, structure and superconducting properties of thin-film layered YBaCuO/Y2O3 composites as components of second-generation HTSC tapes. Diss…Ph.D. M. 144.

13. Antonova L.Kh., Troitsky A.V., Mikhailova G.N., Demikhov T.E., Samoilenkov S.V., Molodyk A.A., Nudem Zh., Bernshtein P. (2017). Current-carrying capacity of HTSC tapes GdBa2Cu3O7-x in magnetic fields in the temperature range 2–100 K. Brief communications on physics of the FIAN. 3. 16–22.

14. Mikhailova G.N., Voronov V.V., Troitsky A.V., Didyk A.Yu., Demikhov T.E., Suvorova E.I. (2013). Processing method for high temperature superconductor. Patent RF 2477900.

15. Boykov Yu.A., Claeson T., Erts D. (1998). YBa2Cu3O7-/CeO2 heterostructures on the R-plane of sapphire. Solid state physics. 40(2). 205–208.

16. Hylton T.L., Beasley M.R. (1990). Flux-pinning mechanisms in thin films of YBa2Cu3Ox . Phys. Rev. B Rapid Commun. 41(16). 11669–72. doi:https://doi.org/10.1103/PhysRevB.41.11669.

17. Lakhno V.D. (2022). Simple Explanation of Cuprates Linear Magnetoresistance Enigma. Condens. Matter, 7(4), 64 (1–4). https://doi.org/10.3390/ condmat7040064.

Published

2024-10-16

How to Cite

Akhmad Abdunabievich Shodiev, Malika Anvarovna Mussaeva, & Elmurotova Dilnoza Baxtiyorovna. (2024). MAGNETIC RESISTANCE OF YBaCuO, GdBaCuO HTSC TAPES IRRADIATED WITH 1–5 MeV ELECTRONS AND 60Co GAMMA RAYS. World Scientific Research Journal, 32(1), 94-104. https://scientific-jl.org/wsrj/article/view/440