GRAF NAZARIYASIDA MINIMAL BOG’LANISH DARAXTINI TOPISHDA PRIM ALGORITMINING QO’LLANILISHI

Авторы

  • Farmonov Sherzodbek Raxmonjonovich Автор
  • Xoshimjonova Sevaraxon Elmurod qizi Автор

Ключевые слова:

Prim algoritmi, Minimum spanning tree(MST), Graf nazariyasi,algoritm murakkabligi, amaliy qo’llanish, MST algoritmlari,bog’lanishlar,og’irlik,turli xil variantlar, Prim's algorithm, Minimum spanning tree (MST), Graph theory, Algorithm complexity, Practical applications, MST algorithms, Connections, Weight, Various variants

Аннотация

Ushbu maqolada Prim algoritmi, graf nazariyasida minimum spanning tree (MST) topish uchun ishlatiladigan samarali algoritm sifatida ko'rib chiqiladi. Prim algoritmi, berilgan grafdagi eng kichik og'irlikka ega bo'lgan bog'lanishlarni tanlab, birinchi nuqtadan boshlanib, bosqichma-bosqich yangi nuqtalarni qo'shish orqali MST ni quradi. Maqolada algoritmning ishlash prinsipi, uning murakkabligi, shuningdek, amaliyotda qo'llanilishi va boshqa MST algoritmlari bilan taqqoslanishi batafsil bayon etiladi. Shuningdek, Prim algoritmining turli xil variantlari va ularning afzalliklari ham ko'rib chiqiladi.

This article examines Prim's algorithm as an efficient method for finding the minimum spanning tree (MST) in graph theory. Prim's algorithm selects the smallest weight connections in a given graph, starting from an initial point and incrementally adding new points to construct the MST. The article details the working principle of the algorithm, its complexity, as well as its practical applications and comparisons with other MST algorithms. Additionally, various variants of Prim's algorithm and their advantages are discussed.

Биографии авторов

  • Farmonov Sherzodbek Raxmonjonovich

    Farg’ona davlat unversiteti amaliy matematika va informatika kafedrasi katta oʻqituvchisi

  • Xoshimjonova Sevaraxon Elmurod qizi

    Farg’ona davlat universiteti 2-kurs talabasi

    xoshimjonovasevara@gmail.com

Библиографические ссылки

FOYDALANILGAN ADABIYOTLAR

1. Kleinberg, J.E. Tardos, (2005). "Algorithm Design." Pearson Education.

2. Cormen, T. H. Leiserson, C. E. Rivest, R. L. Stein, C. (2009). "Introduction to Algorithms" (3rd ed.). MIT Press.

3. Sedgewick, R. Wayne, K. (2011). "Algorithms" (4th ed.). Addison-Wesley.

4. Tarjan, R. E. (1983). "Data Structures and Network Algorithms." SIAM.

5. Bertsekas, D. P., Tsitsiklis, J. N. (2000). "Introduction to Network Optimization." Athena Scientific.

7. Kumar, P., Sharma, A. (2019). "A Survey on Minimum Spanning Tree Algorithms." International Journal of Computer Applications.

8. Zhang, Y., Wang, L. (2020). "A Review of Minimum Spanning Tree Algorithms in Big Data Environment." IEEE Access.

9. Farmonov, S., & Nazirov, A. (2023). C# DASTURLASH TILIDA GRAY KODI BILAN ISHLASH. В CENTRAL ASIAN JOURNAL OF EDUCATION AND INNOVATION (Т. 2, Выпуск 12, сс. 71–74). Zenodo.

10. Farmonov, S., & Toirov, S. (2023). NETDA DASTURLASHNING ZAMONAVIY TEXNOLOGIYALARINI O'RGANISH. Theoretical aspects in the formation of pedagogical sciences, 2(22), 90-96

11. Raxmonjonovich, F. S. (2023). Array ma’lumotlar tizimini talabalarga o’qitishda Blockchain metodidan foydalanish. Yangi O'zbekiston taraqqiyotida tadqiqotlarni o'rni va rivojlanish omillari, 2(2), 541-547.

12. Raxmonjonovich, F. S. (2023). Dasturlashda interfeyslardan foydalanishning ahamiyati. Yangi O'zbekiston taraqqiyotida tadqiqotlarni o'rni va rivojlanish omillari, 2(2), 425-429.

Опубликован

2024-12-05

Как цитировать

GRAF NAZARIYASIDA MINIMAL BOG’LANISH DARAXTINI TOPISHDA PRIM ALGORITMINING QO’LLANILISHI. (2024). Modern Education and Development, 15(5), 329-337. https://scientific-jl.org/mod/article/view/4807