A REVIEW OF MORPHOMETRIC, X-RAY-ANATOMICAL, AND NEUROLOGICAL FEATURES OF CEREBRAL VENTRICLES IN CRANIAL INJURIES AND THEIR CLINICAL IMPLICATIONS

Authors

  • Yo’ldosheva Naima Qudratovna Author

Abstract

Abstract 
Cranial  injuries  significantly  impact  the  structure  and  function  of  cerebral 
ventricles,  with  potential  long-term  consequences  on  neurological  health.  Ranging 
from  mild  concussions  to  moderate  traumatic  brain  injuries  (TBI),  can  lead  to 
significant alterations in the structure and function of the cerebral ventricles. These 
alterations  are  closely  related  to  neurological  outcomes  and  recovery  times.  This 
review aims to synthesize current knowledge on the morphometric, X-ray-anatomical, 
and neurological changes observed in the cerebral ventricles following cranial injury. 
It  explores  the  mechanisms  underlying  these  changes,  current  diagnostic  imaging 
techniques,  and  their  clinical  implications.  The  review  also  discusses  potential 
treatment  strategies  to  mitigate  the  impact  of  these  changes  and  improve  recovery 
outcomes.  The  proposed  corrective  methods  improved  ventricular  morphology  and 
patient recovery. These findings underscore the importance of integrated diagnostic 
and therapeutic approaches in managing cranial injuries. 

 

References

References.

1. Yo’ldosheva N.Q. “ Features and dynamics of disordes of cognitive and static-

locomotor functions in chronic brain ischemia”. Journal of GALAXY

INTERNATIONAL INTERDISCIPLINARY RESEARCH JOURNAL (GIIRJ)

ISSN (E): 2347-6915 Vol. 11, Issue 10, Oct. (2023)

https://internationaljournals.co.in/index.php/giirj/article/view/4466

2. Yo’ldosheva N.Q. “Морфологический аспекты нарушение мелкый моторики

при хроническкий ишемии головного мозга” Journal of Iqro volume 7, issue 1 -

2023 special issue (pp. 94-99)

3. https://wordlyknowledge.uz/index.php/iqro/article/view/3245

4. Yo’ldosheva N.Q. “Morphological aspects of static-locomotor function disorders in

chronic cerebral ischemia” Journal of International Journal of Medical Sciences

And Clinical Research (ISSN – 2771-2265) VOLUME 03 ISSUE 12 PAGES: 7-12

http://theusajournals.com/index.php/ijmscr/article/view/2002

5. Capizzi A, Wu J, Verdusco-Gutierrez M. Traumatic brain injury: a review of

epidemiology, pathophysiology and medical management. Medical Clinics of

North America. 2020; 104(2): 213-238.

6. Chen HR, Chen CW, Kuo YM, Chen B, Kuan IS, Huang H, Lee J, Anthony N,

Kuan CY, Sun YY. Monocytes promote acute neuroinflammation and become

pathological microglia in neonatal hypoxic-ischemic brain injury. //Theranostics.

2022 Jan 1;12(2):512-529.

7. Fogel MA, Pawlowski T, Schwab PJ, Nicolson SC, Montenegro LM, Berenstein

LD, Spray TL, Gaynor JW, Fuller S, Keller MS, Harris MA, Whitehead KK,

Vossough A, Licht DJ. Brain magnetic resonance immediately before surgery in

single ventricles and surgical postponement. //Ann Thorac Surg. 2014

Nov;98(5):1693-8

8. Gaggi NL, Ware JB, Dolui S, Brennan D, Torrellas J, Wang Z, Whyte J, Diaz-

Arrastia R, Kim JJ. Temporal dynamics of cerebral blood flow during the first year

after moderate-severe traumatic brain injury: A longitudinal perfusion MRI study.

//Neuroimage Clin. 2023;37:103344.

9. Hagberg H, Mallard C, Ferriero DM, Vannucci SJ, Levison SW, Vexler ZS. et al.

The role of inflammation in perinatal brain injury. //Nat Rev Neurol. 2015;11:192–

208.

10. Hayashi Y, Jinnou H, Sawamoto K, Hitoshi S. Adult neurogenesis and its role in

brain injury and psychiatric diseases.// J Neurochem. 2018 Dec;147(5):584-594

11. Likhterman B. L. The emergence of a medical specialty (with particular reference

to neurosurgery). Part ii. Natural science factor //Sechenov Medical Journal. – 2022.

– №. 4. – С. 80-85.

12. Ma XY, Yang TT, Liu L, Peng XC, Qian F, Tang FR. Ependyma in

Neurodegenerative Diseases, Radiation-Induced Brain Injury and as a Therapeutic

Target for Neurotrophic Factors. Biomolecules. 2023 Apr 27;13(5):754

13. Maas E, Menon DC, Adelson PD, Andelik N, Bell MJ, Belli A, et al. Traumatic

brain injury: integrated approaches to improve prevention, clinical care and

research.// Lancet Neurol. 2017; 16(12): 987-1048.

14. Nelson SE, Sair HI, Stevens RD. Magnetic Resonance Imaging in Aneurysmal

Subarachnoid Hemorrhage: Current Evidence and Future Directions. //Neurocrit

Care. 2018 Oct;29(2):241-252.

15. Ni W, Zheng M, Xi G, Keep RF, Hua Y. Role of lipocalin-2 in brain injury after

intracerebral hemorrhage. //J Cereb Blood Flow Metab. 2015 Sep;35(9):1454-61.

16. Pang J, Peng J, Yang P, Kuai L, Chen L, Zhang JH, Jiang Y. White Matter Injury

in Early Brain Injury after Subarachnoid Hemorrhage. //Cell Transplant. 2019

Jan;28(1):26-35.

17. Shishido H, Toyota Y, Hua Y, Keep RF, Xi G. Role of lipocalin 2 in intraventricular

haemoglobin-induced brain injury. //Stroke Vasc Neurol. 2016 Jun 24;1(2):37-43.

18. Sun D. Endogenous neurogenic cell response in the mature mammalian brain

following traumatic injury. Exp Neurol. 2016 Jan;275 Pt 3(0 3):405-410.

19. Trofimov AO, Agarkova DI, Trofimova KA, Nemoto EM, Bragina OA, Bragin DE.

Arteriovenous cerebral blood flow correlation in moderate-to-severe traumatic

brain injury: CT perfusion study. Brain Spine. 2023 Sep 21;3:102675.

20. Yang D, Sun YY, Bhaumik SK, Li Y, Baumann JM, Lin X. et al. Blocking

lymphocyte trafficking with FTY720 prevents inflammation-sensitized hypoxic-

ischemic brain injury in newborns. //J Neurosci. 2014;34:16467–81.

Published

2024-12-19

How to Cite

Yo’ldosheva Naima Qudratovna. (2024). A REVIEW OF MORPHOMETRIC, X-RAY-ANATOMICAL, AND NEUROLOGICAL FEATURES OF CEREBRAL VENTRICLES IN CRANIAL INJURIES AND THEIR CLINICAL IMPLICATIONS . TADQIQOTLAR.UZ, 52(4), 161-166. https://scientific-jl.org/tad/article/view/6351