A REVIEW OF MORPHOMETRIC, X-RAY-ANATOMICAL, AND NEUROLOGICAL FEATURES OF CEREBRAL VENTRICLES IN CRANIAL INJURIES AND THEIR CLINICAL IMPLICATIONS
##article.abstract##
Abstract
Cranial injuries significantly impact the structure and function of cerebral
ventricles, with potential long-term consequences on neurological health. Ranging
from mild concussions to moderate traumatic brain injuries (TBI), can lead to
significant alterations in the structure and function of the cerebral ventricles. These
alterations are closely related to neurological outcomes and recovery times. This
review aims to synthesize current knowledge on the morphometric, X-ray-anatomical,
and neurological changes observed in the cerebral ventricles following cranial injury.
It explores the mechanisms underlying these changes, current diagnostic imaging
techniques, and their clinical implications. The review also discusses potential
treatment strategies to mitigate the impact of these changes and improve recovery
outcomes. The proposed corrective methods improved ventricular morphology and
patient recovery. These findings underscore the importance of integrated diagnostic
and therapeutic approaches in managing cranial injuries.
##submission.citations##
References.
1. Yo’ldosheva N.Q. “ Features and dynamics of disordes of cognitive and static-
locomotor functions in chronic brain ischemia”. Journal of GALAXY
INTERNATIONAL INTERDISCIPLINARY RESEARCH JOURNAL (GIIRJ)
ISSN (E): 2347-6915 Vol. 11, Issue 10, Oct. (2023)
https://internationaljournals.co.in/index.php/giirj/article/view/4466
2. Yo’ldosheva N.Q. “Морфологический аспекты нарушение мелкый моторики
при хроническкий ишемии головного мозга” Journal of Iqro volume 7, issue 1 -
2023 special issue (pp. 94-99)
3. https://wordlyknowledge.uz/index.php/iqro/article/view/3245
4. Yo’ldosheva N.Q. “Morphological aspects of static-locomotor function disorders in
chronic cerebral ischemia” Journal of International Journal of Medical Sciences
And Clinical Research (ISSN – 2771-2265) VOLUME 03 ISSUE 12 PAGES: 7-12
http://theusajournals.com/index.php/ijmscr/article/view/2002
5. Capizzi A, Wu J, Verdusco-Gutierrez M. Traumatic brain injury: a review of
epidemiology, pathophysiology and medical management. Medical Clinics of
North America. 2020; 104(2): 213-238.
6. Chen HR, Chen CW, Kuo YM, Chen B, Kuan IS, Huang H, Lee J, Anthony N,
Kuan CY, Sun YY. Monocytes promote acute neuroinflammation and become
pathological microglia in neonatal hypoxic-ischemic brain injury. //Theranostics.
2022 Jan 1;12(2):512-529.
7. Fogel MA, Pawlowski T, Schwab PJ, Nicolson SC, Montenegro LM, Berenstein
LD, Spray TL, Gaynor JW, Fuller S, Keller MS, Harris MA, Whitehead KK,
Vossough A, Licht DJ. Brain magnetic resonance immediately before surgery in
single ventricles and surgical postponement. //Ann Thorac Surg. 2014
Nov;98(5):1693-8
8. Gaggi NL, Ware JB, Dolui S, Brennan D, Torrellas J, Wang Z, Whyte J, Diaz-
Arrastia R, Kim JJ. Temporal dynamics of cerebral blood flow during the first year
after moderate-severe traumatic brain injury: A longitudinal perfusion MRI study.
//Neuroimage Clin. 2023;37:103344.
9. Hagberg H, Mallard C, Ferriero DM, Vannucci SJ, Levison SW, Vexler ZS. et al.
The role of inflammation in perinatal brain injury. //Nat Rev Neurol. 2015;11:192–
208.
10. Hayashi Y, Jinnou H, Sawamoto K, Hitoshi S. Adult neurogenesis and its role in
brain injury and psychiatric diseases.// J Neurochem. 2018 Dec;147(5):584-594
11. Likhterman B. L. The emergence of a medical specialty (with particular reference
to neurosurgery). Part ii. Natural science factor //Sechenov Medical Journal. – 2022.
– №. 4. – С. 80-85.
12. Ma XY, Yang TT, Liu L, Peng XC, Qian F, Tang FR. Ependyma in
Neurodegenerative Diseases, Radiation-Induced Brain Injury and as a Therapeutic
Target for Neurotrophic Factors. Biomolecules. 2023 Apr 27;13(5):754
13. Maas E, Menon DC, Adelson PD, Andelik N, Bell MJ, Belli A, et al. Traumatic
brain injury: integrated approaches to improve prevention, clinical care and
research.// Lancet Neurol. 2017; 16(12): 987-1048.
14. Nelson SE, Sair HI, Stevens RD. Magnetic Resonance Imaging in Aneurysmal
Subarachnoid Hemorrhage: Current Evidence and Future Directions. //Neurocrit
Care. 2018 Oct;29(2):241-252.
15. Ni W, Zheng M, Xi G, Keep RF, Hua Y. Role of lipocalin-2 in brain injury after
intracerebral hemorrhage. //J Cereb Blood Flow Metab. 2015 Sep;35(9):1454-61.
16. Pang J, Peng J, Yang P, Kuai L, Chen L, Zhang JH, Jiang Y. White Matter Injury
in Early Brain Injury after Subarachnoid Hemorrhage. //Cell Transplant. 2019
Jan;28(1):26-35.
17. Shishido H, Toyota Y, Hua Y, Keep RF, Xi G. Role of lipocalin 2 in intraventricular
haemoglobin-induced brain injury. //Stroke Vasc Neurol. 2016 Jun 24;1(2):37-43.
18. Sun D. Endogenous neurogenic cell response in the mature mammalian brain
following traumatic injury. Exp Neurol. 2016 Jan;275 Pt 3(0 3):405-410.
19. Trofimov AO, Agarkova DI, Trofimova KA, Nemoto EM, Bragina OA, Bragin DE.
Arteriovenous cerebral blood flow correlation in moderate-to-severe traumatic
brain injury: CT perfusion study. Brain Spine. 2023 Sep 21;3:102675.
20. Yang D, Sun YY, Bhaumik SK, Li Y, Baumann JM, Lin X. et al. Blocking
lymphocyte trafficking with FTY720 prevents inflammation-sensitized hypoxic-
ischemic brain injury in newborns. //J Neurosci. 2014;34:16467–81.