LSTM TARMOQLARINING MOHIYATI VA MOLIYAVIY PROGNOZLASHDAGI AHAMIYATI

Авторы

  • Umarov Bekzod Azizovich Автор
  • Roʻzimatov Jasurbek Islomjon oʻgʻli Автор

Ключевые слова:

Kalit soʻzlar: LSTM, moliyaviy prognozlash, vaqt seriyalari, uzoq muddatli xotira, sunʼiy neyron tarmoq, deep learning, ketma-ketlik, overfitting, real vaqtli prognozlash, hybrid model

Аннотация

Annotatsiya 
Ushbu maqolada LSTM (Long Short-Term Memory) tarmoqlarining mohiyati 
va ularning moliyaviy prognozlashdagi qoʻllanilishi haqida tushuncha berilgan. LSTM 
tarmoqlarining vaqt boʻyicha ketma-ketlikdagi maʼlumotlarni samarali qayta ishlash 
xususiyati moliyaviy prognozlashda yuqori natijadorlikka ega ekanligi tahlil qilinadi. 
Shuningdek, bu tarmoqlarning imkoniyatlari va cheklovlari ham koʻrib chiqiladi. 

Библиографические ссылки

Foydalanilgan Adabiyotlar

1. Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural

Computation, 9(8), 1735-1780.

2. Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget:

Continual prediction with LSTM. Neural Computation, 12(10), 2451-2471.

3. Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv

preprint, arXiv:1308.0850.

4. Siami-Namini, S., Tavakoli, N., & Siami Namin, A. (2018). The performance of

LSTM and BiLSTM in forecasting time series. Proceedings of the IEEE

International Conference on Big Data.

5. Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory

networks for financial market predictions. European Journal of Operational

Research, 270(2), 654-669.

6. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

7. Brownlee, J. (2017). Deep Learning for Time Series Forecasting: Predict the

Future with MLPs, CNNs and LSTMs in Python. Machine Learning Mastery.

8. Wu, Y., & Tan, H. (2016). Short-term load forecasting based on LSTM recurrent

neural network. IEEE International Conference on Control and Automation.

9. Malhotra, P., Vig, L., Shroff, G., & Agarwal, P. (2015). Long short term memory

networks for anomaly detection in time series. Proceedings of the European

Symposium on Artificial Neural Networks, Computational Intelligence and

Machine Learning.

10. Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of

gated recurrent neural networks on sequence modeling. arXiv preprint,

arXiv:1412.3555.

Опубликован

2024-11-22

Как цитировать

Umarov Bekzod Azizovich, & Roʻzimatov Jasurbek Islomjon oʻgʻli. (2024). LSTM TARMOQLARINING MOHIYATI VA MOLIYAVIY PROGNOZLASHDAGI AHAMIYATI . TADQIQOTLAR.UZ, 50(5), 22-30. https://scientific-jl.org/tad/article/view/3717