БИОХИМИЧЕСКИЙ АНАЛИЗ БИОМАССЫ МИКРОВОДОРОСЛЕЙ CHLORELLA VULGARIS SP2.

Authors

  • Бекназарова Ҳуринисо Улуғбек қизи Author

Keywords:

Ключевые слова: Chlorella vulgaris sp2, микроструктурная биомасса, биохимический анализ, биоэнергия, биотехнология, питательный состав

Abstract

Аннотация: В данной статье представлен всесторонний биохимический 
анализ  микроструктурной  биомассы  Chlorella  vulgaris  sp2,  с  акцентом  на  её 
состав,  методы  извлечения  и  потенциальные  применения.  Исследование 
рассматривает питательную и промышленную ценность биомассы, предоставляя 
сведения  о  её  применении  в  биотехнологиях,  фармацевтике  и  производстве 
биоэнергии. 

References

Литература.

1. Almutairi AW. Full utilization of marine microalgal hydrothermal liquefaction

liquid products through a closed-loop route: towards enhanced bio-oil production

andzero-waste approach. 3 Biotech. 2022;12(9):209.

2. BilanovicD,AndargatchewA,KroegerT,etal.Freshwater and marine microalgae

sequestering of CO2 at different CandNconcentrations– responsesurfacemethodology analysis. Energy Convers Manage. 2009;50(2):262–

267.

3. Hirata K, Phunchindawan M, Tukamoto J, et al. Cry opreservation of microalgae

using encapsulation-dehy dration. Cryo Lett. 1996;17:321–328.

4. Jacob-Lopes E, Cacia Ferreira Lacerda LM, Franco TT. Biomass production and

carbon dioxide fixation by Aphanothece microscopica Nägeli in a bubble column

photobioreactor. Biochem Eng J. 2008;40(1):27–34.

5. de Morais MG, Costa JAV. Carbon dioxide fixation by Chlorella kessleri, C.

vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical

tubular pho tobioreactors. Biotechnol Lett. 2007;29(9):1349–1352.

6. Mountourakis F, Papazi A, Kotzabasis K. The microalga Chlorella vulgaris as a

natural bioenergetic system for effective CO2 mitigation—new perspectives against

global warming. Symmetry (Basel). 2021;13(6):997), doi: 10.3390/sym13060997.

7. Sydney E, Da Silva T, Tokarski A, et al. Screening of microalgae with potential for

biodiesel production and nutrient removal from treated domestic sewage. Appl

Energy. 2011;88(10):3291–3294.

8. Chiu S-Y, Kao C-Y, Chen C-H, et al. Reduction of CO2 by a high-density culture

of Chlorella sp. in a semicontinuous photobioreactor. Bioresour Technol.

2008;99(9):3389–3396.

9. Krishnan V, Uemura Y, Suzana Y, et al. Aspects of carbon dioxide mitigation by

Nannochloropsis oculata cultured in a photobioreactor. Appl Mech Mater.

2014;625:12.

10. Chiu S-Y, Kao C-Y, Tsai M-T, et al. Lipid accumu lation and CO2 utilization of

Nannochloropsis ocu lata in response to CO2 aeration. Bioresour Technol.

2009;100(2):833–838.

11. Han SF, Jin W, Tu R, et al. Optimization of aera tion for biodiesel production by

scenedesmus obliquus grown in municipal wastewater. Bioprocess Biosyst Eng.

2016;39(7):1073–1079.

Published

2025-01-04

How to Cite

Бекназарова Ҳуринисо Улуғбек қизи. (2025). БИОХИМИЧЕСКИЙ АНАЛИЗ БИОМАССЫ МИКРОВОДОРОСЛЕЙ CHLORELLA VULGARIS SP2 . Ta’lim Innovatsiyasi Va Integratsiyasi, 36(3), 9-19. https://scientific-jl.org/tal/article/view/8619