БИОХИМИЧЕСКИЙ АНАЛИЗ БИОМАССЫ МИКРОВОДОРОСЛЕЙ CHLORELLA VULGARIS SP2.
Ключевые слова:
Ключевые слова: Chlorella vulgaris sp2, микроструктурная биомасса, биохимический анализ, биоэнергия, биотехнология, питательный составАннотация
Аннотация: В данной статье представлен всесторонний биохимический
анализ микроструктурной биомассы Chlorella vulgaris sp2, с акцентом на её
состав, методы извлечения и потенциальные применения. Исследование
рассматривает питательную и промышленную ценность биомассы, предоставляя
сведения о её применении в биотехнологиях, фармацевтике и производстве
биоэнергии.
Библиографические ссылки
Литература.
1. Almutairi AW. Full utilization of marine microalgal hydrothermal liquefaction
liquid products through a closed-loop route: towards enhanced bio-oil production
andzero-waste approach. 3 Biotech. 2022;12(9):209.
2. BilanovicD,AndargatchewA,KroegerT,etal.Freshwater and marine microalgae
sequestering of CO2 at different CandNconcentrations– responsesurfacemethodology analysis. Energy Convers Manage. 2009;50(2):262–
267.
3. Hirata K, Phunchindawan M, Tukamoto J, et al. Cry opreservation of microalgae
using encapsulation-dehy dration. Cryo Lett. 1996;17:321–328.
4. Jacob-Lopes E, Cacia Ferreira Lacerda LM, Franco TT. Biomass production and
carbon dioxide fixation by Aphanothece microscopica Nägeli in a bubble column
photobioreactor. Biochem Eng J. 2008;40(1):27–34.
5. de Morais MG, Costa JAV. Carbon dioxide fixation by Chlorella kessleri, C.
vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical
tubular pho tobioreactors. Biotechnol Lett. 2007;29(9):1349–1352.
6. Mountourakis F, Papazi A, Kotzabasis K. The microalga Chlorella vulgaris as a
natural bioenergetic system for effective CO2 mitigation—new perspectives against
global warming. Symmetry (Basel). 2021;13(6):997), doi: 10.3390/sym13060997.
7. Sydney E, Da Silva T, Tokarski A, et al. Screening of microalgae with potential for
biodiesel production and nutrient removal from treated domestic sewage. Appl
Energy. 2011;88(10):3291–3294.
8. Chiu S-Y, Kao C-Y, Chen C-H, et al. Reduction of CO2 by a high-density culture
of Chlorella sp. in a semicontinuous photobioreactor. Bioresour Technol.
2008;99(9):3389–3396.
9. Krishnan V, Uemura Y, Suzana Y, et al. Aspects of carbon dioxide mitigation by
Nannochloropsis oculata cultured in a photobioreactor. Appl Mech Mater.
2014;625:12.
10. Chiu S-Y, Kao C-Y, Tsai M-T, et al. Lipid accumu lation and CO2 utilization of
Nannochloropsis ocu lata in response to CO2 aeration. Bioresour Technol.
2009;100(2):833–838.
11. Han SF, Jin W, Tu R, et al. Optimization of aera tion for biodiesel production by
scenedesmus obliquus grown in municipal wastewater. Bioprocess Biosyst Eng.
2016;39(7):1073–1079.